Stable and dynamic forms of cytoskeletal proteins in slow axonal transport.
نویسندگان
چکیده
Dynamic organization of the axonal cytoskeleton was investigated by analyzing slow axonal transport of tubulin and other major cytoskeletal proteins in the motor axons of rat sciatic nerve 1-4 weeks after injection of L-35S-methionine into the anterior horn area of L3-L5 lumbar spinal cord. A large proportion (50-65%) of tubulin transported in the axon was found to be insoluble when extracted with 1% Triton at 4 degrees C. This cold-insoluble tubulin was also resistant to other microtubule-destabilizing agents such as Ca2+, colchicine, and nocodazole, suggesting that it corresponded to the stably polymerized tubulin specific to the axon. From the cold-soluble fraction, microtubules containing a distinct set of associated proteins were recovered by the taxol-dependent procedure. Transport pattern of cold-soluble and -insoluble tubulin in this system showed a time-dependent broadening of the tubulin wave resulting in the appearance of a new faster wave enriched in cold-soluble tubulin. The slower and the faster waves of tubulin were defined as group V or slow component a (SCa) and group IV or slow component b (SCb), respectively, with respect to the 2 subcomponents of slow transport originally described in the optic system. However, compositions of groups IV and V in sciatic motor axons differed significantly from those of the optic system. Actin also exhibited a clear dual wave pattern of transport that coincided well with that of tubulin, indicating that both actin and tubulin were the major components of both groups IV and V.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
Transport of cytoskeletal elements from parent axons into regenerating daughter axons.
The kinetics of slow axonal transport in newly regenerating axonal sprouts were compared with those in nonelongating axons. The slowly transported cytoskeletal proteins of ventral motor axons were prelabeled by microinjection of 35S-methionine into the spinal cord. Pulse-labeled slow transport "waves" were observed as they progressed from the surviving "parent" axon stumps (located proximal to ...
متن کاملNeurofilaments form a highly stable stationary cytoskeleton after reaching a critical level in axons.
The ultrastructural view of the axonal cytoskeleton as an extensively cross-linked network of neurofilaments (NFs) and other cytoskeletal polymers contrasts with the dynamic view suggested by axonal transport studies on cytoskeletal elements. Here we reconcile these perspectives by showing that neurons form a large NF network along axons which is unequivocally stationary, metabolically stable, ...
متن کاملRetrograde transport of radiolabeled cytoskeletal proteins in transected nerves.
Slow axonal transport is the mechanism by which cytoskeletal proteins are distributed within the axon. This function has traditionally been considered an exclusively unidirectional, anterograde process. Previous observations of cytoskeletal redistribution in surviving, transected axons of the C57BL/Ola mouse led us to hypothesize a retrograde component of cytoskeletal transport. To test this hy...
متن کاملSeeing the unseen: the hidden world of slow axonal transport.
Axonal transport is the lifeline of axons and synapses. After synthesis in neuronal cell bodies, proteins are conveyed into axons in two distinct rate classes-fast and slow axonal transport. Whereas fast transport delivers vesicular cargoes, slow transport carries cytoskeletal and cytosolic (or soluble) proteins that have critical roles in neuronal structure and function. Although significant p...
متن کاملDiabetic Encephalopathy Affects Mitochondria and Axonal Transport Proteins
Introduction: Diabetic encephalopathy is described as any cognitive and memory impairments and associated with hippocampal degenerative changes, include neurodegenerative process and decreased number of living cell. Mitochondrial Diabetes (MD) appears fallowing activation of mutant mitochondrial DNA and is combination of diabetes and cognitive deficit. In this research we showed the correlation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 9 3 شماره
صفحات -
تاریخ انتشار 1989